بررسی روش های طیفی در حل معادلات دیفرانسیل معمولی منفرد و معادلات دیفرانسیلی -جبری

پایان نامه
چکیده

در اینجا، ضمن معرفی کلی روش های طیفی برای حل عددی معادلات دیفرانسیلی معمولی، توجه خود را معطوف به آن دسته از مسایلی می نمائیم که در آنها بعضی توابع ضریب یا تابع جواب غیر تحلیلی هستند. سپس با بیان نقاط قوت و نقاط ضعف روش های طیفی برای حل این دسته از مسایل، یک روش طیفی اصلاح شده را پیشنهاد می کنیم به طوری که نسبت به دیگر روش های طیفی کاراتر است. همچنین با ارائه چندین مثال، موارد مطرح شده را مورد بررسی عددی قرار می دهیم. بعلاوه، مفاهیم پایه ای معادلات دیفرانسیلی-جبری ارائه و حل عددی دسته ای از معادلات دیفرانسیلی-جبری خطی را توسط روش شبه طیفی، مورد بررسی قرار داده و در یک پایان یک روش پیشنهادی جهت تقلیل اندیس مسائل ‏‎dae‎‏ ارائه می دهیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

متن کامل

حل عددی معادلات دیفرانسیلی- جبری به شکل هزنبرگ با استفاده از کنترل مد لغزشی

در این مقاله روشی برای حل عددی معادلات دیفرانسیلی- جبری به شکل هزنبرگ ارائه شده است. در روش ارائه شده یک سطح لغزشی متناسب با ایندکس سیستم تعریف شده است که معادله‌ی کاملی برای محاسبه‌ی متغیر جبری در اختیار قرار می‌دهد. همچنین به دلیل پایداری سطح لغزشی، همگرایی خطای دوری از خمینه‌ی قید در معادله‌ی دیفرانسیلی- جبری تضمین شده است. در انتها، روش روی چند مثال خطی ایندکس و غیر خطی اعمال شده و نتایج آو...

متن کامل

بهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد

در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.

متن کامل

روش های طیفی در تحلیل عددی معادلات دیفرانسیل جبری

در این پایان نامه ابتدا معادلات دیفرانسیل جبری (dae) را شرح داده، انواع مختلف این نوع از معادلات را معرفی کرده و ویژگی های مهم آن ها را مطرح می نماییم. سپس برخی از روش های عددی را که تاکنون برای حل این نوع معادلات مورد استفاده قرار گرفته است، معرفی می کنیم و مثال های متنوعی را برای نمایش کارایی این روش هامورد بررسی قرار می دهیم. در ادامه، روش شبه طیفی مبتنی بر چند جمله ای های چبیشف را برای حل م...

15 صفحه اول

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023